Algebraic Closed Geodesics on a Triaxial Ellipsoid *

نویسنده

  • Yuri N. Fedorov
چکیده

We propose a simple method of explicit description of families of closed geodesics on a triaxial ellipsoid Q that are cut out by algebraic surfaces in R. Such geodesics are either connected components of spatial elliptic curves or of rational curves. Our approach is based on elements of the Weierstrass–Poncaré reduction theory for hyperelliptic tangential covers of elliptic curves, the addition law for elliptic functions, and the Moser– Trubowitz isomorphism between geodesics on a quadric and stationary solutions of the KdV equation. For the case of 3-fold and 4-fold coverings, explicit formulas for the cutting algebraic surfaces are provided and some properties of the corresponding geodesics are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 9 Ju n 20 05 Algebraic Closed Geodesics on a Triaxial Ellipsoid ∗

We propose a simple method of explicit description of families of closed geodesics on a triaxial ellipsoid Q that are cut out by algebraic surfaces in R. Such geodesics are either connected components of spatial elliptic curves or rational curves. Our approach is based on elements of the Weierstrass–Poncaré reduction theory for hyperelliptic tangential covers of elliptic curves and the addition...

متن کامل

Algebraically closed real geodesics on n - dimensional ellipsoids are dense in the parameter space and related to hyperelliptic tangential coverings ∗

The closedness condition for real geodesics on n–dimensional ellipsoids is in general transcendental in the parameters (semiaxes of the ellipsoid and constants of motion). We show that it is algebraic in the parameters if and only if both the real and the imaginary geodesics are closed and we characterize such double–periodicity condition via real hyperelliptic tangential coverings. We prove th...

متن کامل

ar X iv : 0 70 5 . 21 12 v 1 [ nl in . S I ] 1 5 M ay 2 00 7 Density of real closed geodesics on ellipsoids related to

We prove that any real doubly periodic geodesic on an n dimensional ellipsoid with distinct semiaxes and caustic parameters is uniquely associated to a real hyperelliptic tangential cover and that the following density property holds: given a real closed geodesic on the ellipsoid Q = {X2 1/a1 + · · ·+X2 n+1/an+1 = 1} with caustic parameters cj, j = 1, . . . , n − 1, for any ǫ > 0 there exist (a...

متن کامل

Isometry - invariant geodesics with Lipschitz obstacle 1

Given a linear isometry A0 : Rn → Rn of finite order on Rn , a general 〈A0〉-invariant closed subset M of Rn is considered with Lipschitz boundary. Under suitable topological restrictions the existence of A0-invariant geodesics of M is proven.

متن کامل

Geodesics on an ellipsoid in Minkowski space

We describe the geometry of geodesics on a Lorentz ellipsoid: give explicit formulas for the first integrals (pseudo-confocal coordinates), curvature, geodesically equivalent Riemannian metric, the invariant area-forms on the timeand space-like geodesics and invariant 1-form on the space of null geodesics. We prove a Poncelet-type theorem for null geodesics on the ellipsoid: if such a geodesic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008